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An investigation is made of the coupling between Soret-driven convection, at positive separation ratio,
and a solid-liquid interface. This phase boundary forms upon the solidification of an upper portion of a
thin layer of a dilute binary mixture that is confined between highly conducting and nearly impermeable
horizontal plates. Using a long-wavelength expansion, a nonlinear evolution equation is derived that in-
cludes the coupled effects of solidification and thermosolutal convection due to the Soret effect. The va-
lidity of the derivation is found to be limited to regions, in the parameter space, that are determined as
functions of the separation ratio, the Lewis number, and the thickness of the solid layer. The numerical
solutions of the evolution equation show that the formation of the solid layer affects the leading-order
concentration profile, and that the deviation of the interface from its planar state is weakly affected by
the convective currents in the liquid. The interface morphology, however, has the same form as the con-
vective pattern in the fluid mixture. The consideration of boundaries that are poor conductors of heat
leads to a problem that is characterized by a heat-transfer Biot number ¥ and a mass-transfer Biot num-
ber 3. The threshold values for the onset of convection are determined, and their dependence on 3 and y
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is discussed.

PACS number(s): 47.25.Qv, 68.45.—v, 64.70.Dv, 81.10.Fq

I. INTRODUCTION

Several years ago, Dauzere [1] reported results of a
very interesting experiment in which a thin liquid layer
was solidified from above. Dauzeére was primarily in-
terested in freezing the convective cells that had been ob-
served by Bénard [2]. By freezing a thin layer of warm
bee’s wax from its free surface, which was exposed to air,
Dauzere observed that the temperature difference im-
posed during the cooling process initiated a convective
state in the form of “up-hexagons™ [3] that preceded the
onset of solidification. If the cooling was allowed to slow-
ly continue, the wax began to freeze. Solidification ini-
tiated first at the upper vertices of the hexagons where
the fluid was coldest, progressed downward along the
cell’s sides, and finally moved inward, freezing from the
top to the bottom. As the last portion of the fluid
solidified, the melt below was drawn upward. The final
configuration of the solidified layer had a lower surface
which consisted of a periodic array of hexagonal cells
with elevated centers.

The investigation of purely thermal effects on the mor-
phology of a solid-liquid interface, which included a
three-dimensional pattern selection analysis, was per-
formed by Davis, Miiller, and Dietsche [4], and Dietsche
and Miiller [5]. They conducted a Bénard-like experi-
ment in which a thin layer of cyclohexane, confined be-
tween two highly conducting plates, was cooled from
above at a temperature below freezing. The upper part of
the layer froze, and a deformable solid-liquid interface
separating the solid phase from the liquid phase appeared
in the process. The dependence of the interfacial patterns
on the Rayleigh number, the wave number, and the
thickness of the solid layer 4 was investigated. Their ex-
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periments showed a subcritical polygonal pattern or a
steady roll pattern at a small deviation from the critical
Rayleigh number and a transition to a bimodal convec-
tive state at intermediate values of the Rayleigh number.
Only unsteady roll structures persisted at high Rayleigh
numbers. These experiments were performed at values of
A ranging between 1 and 5. Their analytical studies re-
sulted in a bifurcation diagram that predicted two regions
of bistability. In a supercritical region, rolls and up-
hexagons coexist, and in a subcritical region, up-
hexagons coexist with the conductive state. A quantita-
tive comparison of the pattern formation analysis with
the experiments, however, was not possible. While the
analytical study was valid for very small solid thickness,
the experiments had to be carried at much thicker solid
layers.

In the physically more relevant problem of the freezing
of a binary mixture, an added mechanism for convective
motion exists, namely, the variation of density with con-
centration. In this case, the solidification process in-
volves both heat and mass flows. Since the only external
control parameter that appears in this problem is the
temperature difference between the top and lower plates,
it seems natural to inquire about the influence of the con-
centration gradients, which are induced by the external
temperature gradient, on the solid-liquid interface mor-
phology. This is the so-called Soret effect which arises in
a mixture as a result of the presence of a term, which is
proportional to the temperature gradient, in each concen-
tration flux. This effect is measured by the separation ra-
tio, which is defined as the ratio of solutal density gra-
dient to thermal density gradient. This separation ratio is
positive when the induced concentration gradient
enhances the destabilizing effect of the temperature gra-
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dient and it is negative when solute distribution opposes
the destabilizing effect of the temperature difference.

The phenomena of Soret-induced convection has re-
ceived a lot of attention in recent years (see [6] and refer-
ences therein). Much of the interest is due to the rich
variety of spatial and temporal structures that can be ob-
served experimentally near threshold. The appearance of
these structures depends on the magnitude and sign of
the separation ratio denoted here by S. While the sign of
S can depend on the mixture used, its magnitude can be
controlled externally by varying the mean temperature
and concentration in the liquid. In the limit of vanishing
S, the classical Rayleigh-Bénard problem with infinitely
conducting plates is obtained. For large S, compositional
effects dominate and the Soret regime is obtained. An in-
teresting feature of this regime is its similarities with the
Rayleigh-Bénard problem with poorly conducting plates.
In the first regime, two-dimensional rolls are the only
stable form of convection, while in the second one, con-
vection in the form of square patterns is preferred.
Moses and Steinberg [7] and Clune and Knobloch [8]
have taken advantage of this fact to study the transition
between rolls and squares by varying the magnitude of
the positive separation ratio S.

In previous work by Zimmermann [9] and Zimmer-
mann, Miiller, and Davis [10], an experimental investiga-
tion combined with a linear stability analysis was under-
taken to investigate the coupled effects of Soret-induced
convection and solidification. Using mixtures of ethyl al-
cohol and water, they limited their experimental study to
the case of negative separation ratio. The mixture is then
subject to time-dependent convection. However, they
find that the presence of a solid-liquid interface forces a
transition to a steady, hexagonal convection pattern from
a traveling-wave pattern. For a mixture having a positive
separation ratio, Hadji and Schell [11] performed a
small-amplitude stability analysis on the interfacial con-
vective patterns that form due to the coupling of Soret-
driven convection and the interfacial deformations. They
have predicted that down-hexagons are generally pre-
ferred, and in a small range of Rayleigh numbers, there is
exchange of stabilities between squares and down-
hexagons. They have also found hysterectic transitions
between the static state and hexagons and between
squares and hexagons. The recent experimental observa-
tions [10], even though valid for S <0, seem to corro-
borate the findings in [11] that the coupling between
Soret-driven convection and the deformations of the
solid-liquid interface yields a flow pattern that consists of
down-hexagons. Indeed, for a thin solid layer, Zimmer-
mann, Miiller, and Davis [10] have observed an interface
that consists of ice regions surrounded by ice-free re-
gions. For a pure substance, however, the coupling be-
tween thermal convection and interface deformations in-
duces a pattern of up-hexagons [4,5]. This will corre-
spond to an interface consisting of ice-free regions sur-
rounded by ice regions.

In the following analysis, the small-amplitude assump-
tion made in Ref. [11] is relaxed, and a nonlinear evolu-
tion equation that is valid for larger deviation of the con-
trol parameter from its critical value is derived. This

equation describes the asymptotic behavior of a scaled
concentration. The deviation of the interface from its
planar state is found to be related to the concentration
and temperature perturbations. Besides the Rayleigh,
Prandtl, and Lewis numbers, the separation ratio, the
amount of solidification (measured by the solid layer
thickness), and the dependence of the freezing tempera-
ture on composition (measured by the liquidus slope) ap-
pear as important parameters in the problem formula-
tion. The effects of these parameters as well as those of
the boundary conditions appear in the various coefficients
of the evolution equation. Solutions for some values of
these parameters are obtained numerically, and their
influence on the shape of the interface is determined.
These solutions are required to clarify further the cou-
pling between convective currents in the liquid-phase and
the solid-liquid morphology. These requirements are the
primary motivations in this paper.

The remainder of the paper is outlined in the following.
In Sec. II, the mathematical formulation of the problem
as well as the required assumptions used in the solution
are presented. The derivation of the nonlinear equation
is described in Sec. III. An expression is also obtained
that reveals the range in the physical parameter space for
which this analysis is valid. In Sec. IV, we solve the
equation numerically for some values of the solid thick-
ness, the separation ratio, the Lewis number, and the
liquidus slope; and some concluding remarks are present-
ed in Sec. V.

II. MATHEMATICAL FORMULATION

The system we consider, in which a solid-liquid inter-
face forms during the solidification of a dilute binary mix-
ture with a positive separation ratio, is briefly described
in this section (see [4,10] for details). The interface
separating the two phases is assumed to be a surface with
zero thickness through which there is transfer of heat.

A. Basic equations

We consider a thin layer of a dilute binary fluid con-
tained between two nearly impermeable [12] and perfect-
ly conducting plates that are separated by the distance d.
The temperatures T, and T'; are maintained at the lower
and upper boundaries, respectively. The temperature
gradient Ty—T, is selected so as to allow for the
solidification of an upper portion of the fluid layer. The
interface that separates the lower liquid phase from the
upper solid phase is assumed to be planar in the static
state but deformable under the influence of convective
currents. (The assumption of a planar interface is dis-
cussed in Sec. V.) The assumption of boundaries that are
impermeable to mass flow implies the vanishing of the
flux condition [o(D;C; +D;T;)/3z]=0 at z=0 and d,
where D;=S8;C;(1—C;)D, and S, is the Soret
coefficient [13]. We ignore the variation of D; with con-
centration so that the basic concentration profile is linear
in the vertical coordinate. Furthermore, we neglect the
changes in the concentration of the mixture that are asso-
ciated with solute rejection or incorporation during the
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solid formation.
The static steady state is then defined by the following:

TL(z>=—Ah—Tz+T0, 0<z<h, (2.1a)
1
Dl AT Cs

C,(z) ——’I*}T(z—hl)-f-—]?, 0=z=h (2.1b)

Cs(2)=C, , hy<z<d 2.1¢)

. T,—mC, /K — Ty

TS(Z): h (z_d)+T1 ’ hlSZSd y
(2.1d)

where the subscripts L and S stand for liquid and solid
phase, respectively. The other symbols that appear in
Egs. (2.1a)-(2.1d) are as follows: m is the slope of the
liquidus line; K is the distribution coefficient, with K =1
for consistency with our assumptions; A, is the thickness
of the solid layer; and D, and D, are the solute diffusion
coefficient in the liquid phase and the thermal diffusion
coefficient resulting from the Soret effect, respectively.
The temperature difference AT=mC,/K+Ts—T,,
where T is the freezing temperature of the pure solvent
and f"s is the temperature in the solid phase. In order to
couple the interface corrugations to the concentration in
the liquid phase, we have supposed that the following
holds at the interface:

T(n)=mC(n)+Ts . (2.2)

Equation (2.2) relates the freezing temperature of the
mixture to its composition, and ignores the capillarity
effects. The thickness of the solid layer is specified by the
external boundary conditions [4],

h Tl - TS - mcs /K

A=—"= )
h,  Ts—To+mC,/K

(2.3

Using the Boussinesq approximation, we obtain the fol-
lowing dimensionless description for the temporal and
spatial evolution for the velocity vector v and for the de-
viations ® and ¢ of the temperature and concentration
distributions from the static state respectively [14]:

p! %+v-v v=—Vp+R(O+Sc)k+V¥,  (2.4a)
%ﬂ-v O=vk+V0, (2.4b)
[%+V-V c=v-k+7Vic—0®), (2.4¢)
V-v=0. (2.4d)

The liquid height in the static state k; and h}?/k have
been used as scales for length and time, respectively. The
concentration is scaled by the Soret-induced concentra-
tion gradient that exists between the lower plate and the
planar interface when the system is in the static state,
while temperature is scaled by (T, — T, ), where T, is the
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actual temperature at the solid-liquid interface. In the
static state, T, is approximated by mc; + T, where m is
the slope of the liquidus curve in the mixture’s phase dia-
gram and c; is the solute concentration at the solid-liquid
interface.

The four dimensionless parameters appearing in Egs.
(2.4) are the Rayleigh number R =a,;ghi(T,—T,)/vk,
the Prandtl number P =v/k, the Lewis number 7=D, /k,
and the separation ratio S=a;AC/a(T,—T,). Here
ar and a; are the thermal and solutal expansivities, re-
spectively, g is the gravitational constant, and v is the ki-
nematic viscosity. The unit vector k is directed opposite
to the gravity vector. Only heat conduction is considered
in the solid phase and this is described by the equation
d6=v0,

ot
where @ is the dimensionless temperature deviation from
the basic distribution in the solid phase.

The continuity equation (2.4d) can be eliminated by us-
ing the general representation for a solenoidal vector field
(15]

v=VX(VXyk)+VXok .

(2.5)

(2.6)

If we take the vertical component of the curl of Eq.
(2.4a), we obtain an equation for the vertical component
of the vorticity o,

i(v%,a)—lovx(v-Vv)

-1 — w22
P VAVyo), .7

and the vertical component of the double curl of Eq.
(2.4a) yields an equation for ¥,

9 YAV, )+ K-V X(VXV-Vv)

—1
P at

=VHVLY)—SRV4L6—R(1+S)V40 . (2.8

In writing Eqgs. (2.7) and (2.8), we have made use of the
representation (2.6) everywhere, but omitted it in the
terms containing v-Vv for reasons of space. Finally, the
heat and the scaled concentration equations become

S 49, D¢V 0V} yDO
8080 30030 , o o)
P e T tVh=ve,  @9)
9 VDYV ,6—V
ar TVuD¥-Vud—VyyDé
+§Qa_0_3_0§<é=7v2¢_v2®, (2.10)

dx dy Ox dy

where ¢=c—®, Vy is the horizontal gradient, and
D =3/0z.

B. Boundary conditions

The complete formulation of the problem is specified
by Egs. (2.5) and (2.7)-(2.10) and appropriate boundary
conditions. These boundary conditions are now briefly
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introduced [10,11]. The conservation of solute at the in-
terface located at z=7(x,y,t) gives
N-V$=0. (2.11a)

The continuity of temperature and the assumption of
thermodynamic equilibrium at the interface imply

1-8 8 _

1_H5®(77) =5 (p)=n—1 (2.11b)
and

O(n)=A46(y) , (2.11c)

where 8=mD, /D, is the dimensionless liquidus slope
[11]. The balance between the latent heat release and the

jump in the heat flux at the interface yields
N-v(46—-0)=0. 2.11d)

For a nearly impermeable lower boundary we obtain a ra-
diation boundary condition [12]

D¢(0)=p4(0) ,

where f3 is the mass transfer Biot number.
For top and lower plates that are infinitely conducting,
we have

0(0)=0,
A1+ 4)=0.

(2.11e)

(2.119)
(2.11g)

The assumption of a no-slip boundary condition on the
velocity at the rigid plates and at the interface, combined
with mass conservation at the interface, implies

Yy=Dy=0 at z=0,7, (2.11h)

o=0 atz=0,7. (2.111)

The unit vector N in Egs. (2.11a) and (2.11d) is normal
to the interface and is given by
N=(—n,—mn,,D/(+n;+n))'"2.

Several assumptions have been made in deriving the
above governing equations and boundary conditions. We
have neglected any variations in the thermal diffusivity,
density, and thermal conductivity of the mixture upon
solidification. Furthermore, since the time scale resulting
from the growth velocity is very large in comparison to
the time scale of convection, the effects associated with
the latent heat are ignored. Therefore, in this limit of sta-
tionary interface, changes in concentration occur over a
length scale I, ~D,/V, where V is the interface velocity,
and since /, >>h,, the convective effects are more impor-
tant. From boundary condition (2.11b), we observe that
for the case §=0, which corresponds to an interfacial
temperature that is independent of concentration, the in-
terface shape is determined solely by the temperature per-
turbation. However, when 80, the coupled concentra-
tion and temperature effects contribute in the determina-
tion of the interface morphology. In the limit of a sta-
tionary interface, and zero solute diffusion in the solid,
the concentration gradients that develop at the interface
are due to the convective motion in the liquid. Conse-

(2.12)
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quently, in order for these gradients to be felt by the in-
terface, the concentration boundary layer that forms at
the interface, due to the no-slip condition, is required to
be infinitely thin. Since |8] <<1, we adopt the scaling
8=0(e?), where € is a small perturbation parameter
which is defined in the next section, thus allowing for the
effects that are due to the dependence of the interfacial
temperature on composition to appear in the leading-
order expression for the interface.

III. DERIVATION OF AN EVOLUTION
EQUATION FOR THE INTERFACE

For a positive separation ratio, the principle of ex-
change of stabilities holds. Furthermore, it is known [14]
that in the limit of a vanishing Biot mass-transfer
coefficient 3, which corresponds to the case of an im-
permeable boundary, and for a large positive separation
ratio, the primary instability is to a long wavelength. In
this paper, we are considering a system that is nearly but
not completely impermeable. In this case, 3 <<1 but not
zero, therefore the convective state is not homogeneous,
but cellular. Proceeding along standard lines [16], we
derive an evolution equation for the leading-order contri-
bution to ¢. We introduce the slow variables

(x,)=(X,Y)/e, t=T/e*, O<e<<1 (3.1)

and expand all convective quantities, including the inter-
face in powers of €2,

[0,8,0,,0 =[O, ¢, O, 1,00]
+€2[®2,¢z,@2,¢2,02]+ T,
n=1+emn+ - .

(3.2a)
(3.2b)

The Rayleigh number and the mass-transfer Biot num-
bers are scaled as

R=R,+pe+ -+, u=0(1), B=€B, f=001).
(3.3)

By substituting the horizontal and temporal scalings, Eq.
(3.1), into Egs. (2.5) and (2.7)-(2.10) and boundary condi-
tions Egs. (2.11a)-(2.11i), and by making use of the ex-
pansions, Egs. (3.2) and (3.3), we obtain a hierarchy of
boundary-value problems of different orders in € that can
be solved in a successive manner.

Equations (2.5), (2.9), and boundary conditions (2.11c),
(2.11f), and (2.11g) give

D*0,=D*®,=0, (3.4a)
subject to the end conditions

0y(0)=6(1+ 4)=0, (3.4b)

Oy(1)=0,(1), DOY1)=DB(1) . (3.4¢)

The problem defined by Egs. (3.4) yields the trivial solu-

tions
0,=6,=0 3.5)

for the leading-order contributions to the temperature
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profiles of the liquid and solid phase, respectively. In

writing Egs. (3.4b) and (3.4c), we have made the transfor-

mation, 4 @:@new’ then dropped the subscript new.
Equations (2.10), (2.11a), and (2.11e) imply

D2$,=0 with D¢y(0)=D¢,(1)=0, (3.6)

and yield the expression ¢y=f(X,Y,T) for the leading-
order contribution to the concentration. Similarly, Eqgs.
(2.8) and (2.11h) imply

D*y—SRypo— R (1+S5)0,=0, (3.6a)
subject to the boundary conditions

Yo=D¢,=0 at z=0,1. (3.6b)
The solution to the boundary value problem (3.6) is

Yo=RSf(z*—2z3+22)/24 . (3.7)

We complete the solution to the leading-order problem
by solving for the vorticity

D%5,=0 with oy(0)=0(1)=0 (3.8)
to find
UO:‘O . (3.9)

From Egs. (2.10) and (2.11a) and (2.11e) to order € we
obtain

D2y + 7V — V=V DYy Vy f . (3.10a)
The corresponding boundary conditions are
D¢,=0 at z=0,1. (3.10b)

A solution of the inhomogeneous problem (3.10) exists
if a solvability condition is satisfied. In this case it
suffices to integrate Eq. (3.10a) over the liquid layer thick-
ness. We thus find the critical value of the Rayleigh
number for the onset of convection to be

R,=7207/S . (3.11)

Hence the threshold value for the onset of convection
is not affected by the formation of the solid. This is not
the case, however, if solute diffusion is included. By tak-
ing into account solute diffusion in the solid phase, the
boundary condition on ¢, at the interface, Eq. (3.10b), is
replaced by a radiation boundary condition with a Biot
number that depends on the thickness of the solid layer.
This thickness will then appear in the expression for R,
(see [4]).

Straightforward solution of the problem (3.10) yields

¢, =122 —62°+5z*— 2V}, f

+(62°—15z*+10z%) |V, fI*+K . (3.12)
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where K is an integration constant which does not enter
in the present calculations to the order at which they are
considered. The solution to the order € of Eq. (2.5) that
satisfies the boundary condition (2.11g) is given by

6,=C[z—(1+ 4)], (3.13)

where C is an integration constant. Application of the

conditions (2.11c¢) and (2.11d) yield
0,(1)=—C4 (3.14a)

and

DO,(1)=C . (3.14b)

The last two equations can be combined to form a radia-
tion boundary condition for ®, at z=1

©,+ AD®,=0 . (3.15)

The order €? of Eq. (2.9) with boundary conditions Egs.
(2.11f) and (3.15) yields

228—6z°+5z4— 1+24

(3.16)
2 1+ A4

z |\V4Lf .

The matching of the second-order terms in € in Eq. (2.8)
and boundary conditions Eq. (2.11h) yield the following
for Y,("=D):

DYV, +2D* (V) —SR V4,
—SuVid,—Ry(1+5)V40,

=P*1[2D{(G’)2F1+GG"F2}—D2(GG’)F3] ,  (3.17)

where

G(z2)=30r(z*—2z3+22) , (3.18)

F, =f§y+f§’}'+f§x“fxxfyy ’ (3.19)

Fy=fyfxxy —fySyvy T xFxxx = xS xvy (3.20)

Fy=(V4f P —=Vuf Vu(VLf). (3.21)
The corresponding boundary conditions are

1,(0)=D,(0)=1,(1)=0 . (3.22)
At the interface, the order €* of Eq. (2.11h) yields

D,(1)=—n,D%y(1) . (3.23)

The solution of Eq. (3.17) with boundary conditions Egs.
(3.22) and (3.23) is
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Vi, = 425 6Wz1°—30Wz°+45Wz8 — 1268126+ [2525 77— 126(S +1)Ur*]z°—210S 7z*
1+24 752 4 +430 6124 +360
+ |70—"=5%+ +
17457 x4 57 144 7 605
1+24 983 4 +535 843 4 +465
+ 2 B3I A T 2 v4
1+ 4 8+ 1+ A4 S+ 1+ 4 +3ST Vaf
+§[102 —4528+60z7+ 100z —75221V% |V, £ >+ G (2)[ VLK + (1 /720)V3, f]
7'2 3 2 2

The symbols that appear in Eq. (3.24) are defined as fol-
lows:

W=(S+1)7?+S1, (3.25a)
U=(1+24)/(1+ 4), (3.25b)
G,(z)=[400z°— 180028+ 3120z
—2520z°+840z°—40z3] , (3.25¢)
G,(z)=[300z°—1350z%+2280z"—1680z°
+420z°—60z3—30z2] , (3.25d)
=[350z°— 1575284270027 —2100z°
+630z°—20z3+15z2] . (3.25¢)

Finally, at order €, Eq. (2.7) with boundary conditions
Egs. (2.111) yields

V%0,=[30z"—105z%+ 1472°—105z*—2z]
X[ fxxxSy+Fxvvfy —Fxxyfx—FyvvSfx] -(

The boundary conditions for ¢, are obtained from Egs.
(2.11a) and (2.11e),

D¢4(0):f3\f, Do (1)=Vyn,-Vyuf .

Finally, the solvability requirement for ¢, in the order
€* of Eq. (2.10) yields the sought evolution equation for
f(X,Y,T):

(3.26)

(3.27)

+ 0V f VgV f P+ Vi fIVefI?]

S AT S (Vi (VRSP
— 15V (nof) (3.28)
where
|17 25(1+S)r  (1+S)(1+24)r
XS A= 4t 51s T 4s(i+4)
(3.29)

We observe that Eq. (3.28) ceases to be well posed

when the coefficient y becomes negative. It is known that
the ill posedeness of the evolution equation is due to the
fact that the limit Yy —O0+ is associated with an increase
in the critical wave number [12,17]. These shorter wave-
lengths cannot be tested within the limits of this analysis.
Thus the analysis presented in this paper is valid for pa-
rameters A, S, and 7 for which Y is positive. The regions
where the derived evolution equation, Eq. (3.28), is valid
are depicted in Fig. 1, where S’ is plotted against A for
7=0.001, 0.005, and 0.01. The variation of S’ with A4 is
certainly expected for the present boundary conditions.
While larger positive values of S favor primary instabili-
ties with very long wavelength, increases in 4 have the
opposite effect, in agreement with Fig. 3 of Ref. [11].
Therefore larger values of the solid thickness require
larger values of the separation ratio S in order to keep the
critical wave number small and the expansion consistent.
For A fixed, the lower bound on S, which is required to
make Y >0, increases with increasing values of the Lewis
number 7.

The leading-order deviation 17, of the interface from its
planar state is derived from Eq. (2.11b). We let =0 (€?)
to allow for the coupling effects between ¢, and the inter-
facial deformations. For m <0, we set 6= —62§, where

0.10

0.08
1

0.06
L

0.04
A

8~
o
o
Q¢
i T T T
0.0 0.5 1.0 1.5 2.0
FIG. 1. Plot of the lower bound S’ as a function of A for

7=0.001(03), 7=0.005(X ), and 7=0.01(A).
the analysis is limited to the regions S > S’.

The validity of
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£=0/(1), to obtain

— 2
=gy Vil S

In the next section, we will study Eq. (3.28), restricting
the analysis to two-dimensional patterns.

(3.30)

IV. ANALYSIS OF THE EVOLUTION EQUATION

If we eliminate the y dependence in f, and consider the
following scaling:

w=(4r/0)T, £E=V2/xX, f=V7Tx/10F, (4.1)

then upon substitution of Eq. (3.30) for 7,, Eq. (3.28)
reduces to

oF _ A 3
+T3(F})+5T3(F2) , 4.2)
where
TA &
=—=—V7/10x = r,==v .
D=5t 7/10x, T=T/r, T;=3VIx/10

4.3)

Notice that the effects associated with the Prandtl num-
ber do not appear in the final evolution equation. During
the course of the derivation, we have implicitly made the
assumption that P is at least an O (1) quantity. In this
case, because of symmetry with respect to the midplane
of the liquid layer in the leading-order velocity boundary
conditions, the terms multiplied by P ~! average to zero.
However, the coefficient I'; depends on the Prandtl num-
ber when there is asymmetry in the velocity boundary
conditions at leading order in € (see Chapman and Proc-
tor [16]). When P=0(€?), the equations for v, and o
are then coupled and their solution yields a nontrivial
leading-order vorticity.

We observe that the symmetry-breaking mechanism in
Eq. (3.28) is due to the solid layer thickness A and to the
amount of interfacial deformations represented by the
coefficients I', and I';. Also note, from the problem for-
mulation, that 4 =0 implies zero deformations. Howev-
er, it is possible for 470 and have zero deformations. In
this case the solid layer plays the role of an upper planar
plate that is less conducting than the original one.

We investigate the stability of the trivial solution of
Eq. (4.2) by considering its linear version.

oF N
o T Feese F2F e +BF=0 . (4.42)
Equation (4.4a) admits solutions of the form
F(&,w)= explaw +ib§) , (4.4b)

where the growth rate a and the wave number b satisfy
the dispersion relation

—(b2—1*+(1—p) (4.4¢)
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We notice from Eq. (4.4c) that ﬁ =1 is the critical value
separating growing and decaying disturbances. The
fastest growing disturbances have a wave number b=1
(see Gertsberg and Sivashinsky [16]).

We consider the numerical solution of Eq. (4.2) with
periodic boundary conditions on the interval [0,87] by
using a fully explicit finite-difference scheme. The inter-
val of integration is divided into 300 mesh intervals, and
the time step size Aw has been chosen to satisfy the sta-
bility criterion as given by the linear part of Eq. (4.2),
Aw <(A£)*/8, where AE is the step size for £. The com-
putations are then carried until a steady state is reached.

When solidification is absent, 4 =0 and I';=0, Eq.
(4.2) reduces to the one derived by Knobloch [17]. It de-
scribes the time and spatial evolution of the leading-order
concentration in the context of Soret-driven convection
at positive separation ratio. The difference between his
numerical coefficients and ours is due to the fact that his
boundaries, which are impermeable, are located at
z==1.

We find that the initial condition F(§,0)=0.1cos(§),
converges to the trivial solutlon when 5> 1, but evolves
toward a cellular state when B<1 The amplitude is
found to increase with increases in the deviation of ﬁ
from one, while the wavelength remains equal to the crit-
ical wavelength (see Fig. 2).

The presence of solidification, which is coupled to the
interfacial deformations, Eq. (2.11b), affects the concen-
tration profile in the liquid mixture. From the numerical
solutions of Eq. (4.2), Figs. 3—5, we observe that increases
in A lead to wider up-flow regions of warm fluid and nar-
rower down-flow regions of cold fluid, and to a decrease
in the amplitude of ¢,. This is an indication of broken
up-down symmetry. Hadji and Schell [11] have indeed
shown, by using a detailed small-amplitude stability
analysis, that there exists a transition to subcritical
down-hexagon patterns when A >0. Similar observa-
tions have been made by Chapman and Proctor [16]
when solving a nonlinear evolution equation for the
leading-order convective temperature perturbation be-

0.25

F
0.00

n
N
°l I I T T T T
0.0 5.0 10.0 15.0 20.0 25.0 30.0
3
FIG. 2. Steady-state solution of Eq. (4.2) (0O) for
I''=TI,=TI3;=0. This corresponds to the no-solidification case

with 4 =0, B 0.85, §=0.01, and 7=0.01.
tion 0.1 cos(&) is represented by (@).

The initial condi-
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T
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FIG. 3. Plots of the steady-state solution of Eq. (4.2) (O), and
of the interfacial deformations, Eq. (3.30) (magnified by a factor
of 25 for clarity), shown in (——0O——) for ﬁ=0. 85,
§=0.01, 7=0.01, and {=0.5; (a) 4=0.1and (b) 4 =1.0.

&

25.20

T T
10.08 15.12 20.16

3

1.0

T 1
10.08 15.12 20.16 25.20

3

FIG. 4. Plot of 3, Eq. (3.7), for parameters values 5=0.85,
£=0.5, §=0.01, and 7=0.01 for (a) 4=0.1 and (b) 4=1.0.
The wider cells correspond to warm up-flow and the narrow
cells to cold down-flow.

T T !
15.12 20.18 25.20

FIG. 5.’\ Plot of ®,, Eq. (3.16), for the bparameters values
A=0.1, p=0.85, §=0.01, £{=0.5, and 7=0.01. The wider
cells correspond to warm up-flow.

tween insulating boundaries. Their equation, which cor-
responds to Eq. (4.2) without the terms that are multi-
plied by T', and I';, is solved numerically for the case of
perfectly insulating plates, which corresponds to B=o0,
and for an O (1) deviation of the Rayleigh number from
its critical value. Their plots show the same qualitative
behavior as ours. Therefore these extra terms in front of
I'5, and T'; in Eq. (4.2), which owe their existence pri-
marily to the deformations of the solid-liquid interface,
do not seem to contribute to any new behavior. These
coefficients are due solely to the amount of interfacial de-
formations and vanish for a planar interface. In all the

<
)
(a)
=100
7=0.03 =10.
- X
o~ n
° 1.0
=]
0.5
<
o 4
0.07
T
- !
0.00 0.05 0.10
S

1150

0.00 0.05 0.10
S

FIG. 6. Plots of (a) the critical wave number a, and (b) the
critical Rayleigh number R, for several values of the mass and
heat transfer Biot numbers 3 and ¥ at the top and bottom boun-
daries, with Lewis number 7=0.03 and solid layer thickness
A=0.
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cases that we have investigated, these interfacial deforma-
tions are found to have a much smaller amplitude than ¢,
to have any significant effects as long as {=0(1). We
also observe that the nonplanar interface has a cellular
structure that is identical in form to the convection pat-
tern in the liquid.

V. CONCLUDING REMARKS

We have investigated the coupling between
solidification and Soret-driven convection in a thin layer
of a dilute binary mixture. Using a Bénard-like setup and
a formulation that is in the spirit of Davis, Miiller, and
Dietsche [4], we were able to isolate the effects of the con-
vective currents in the liquid, due to the Soret effect, on
the shape of the solid-liquid interface. We have made
some simplifying assumptions in order to keep the non-
linear analysis tractable. While most are standard ap-
proximations that are routinely made in solidification
problems, the assumption of a planar interface in the stat-
ic state requires some explanation. It is well known that
during the freezing of a binary mixture, the solid-liquid
interface may be subject to morphological instabilities
that are of diffusive nature. Certain conditions on the in-
terface velocity, the distribution coefficient, and the gra-
dients of concentration and temperature must be met for
the onset of this instability. In the limit of a vanishing in-
terface velocity, the onset of the convective instability
precedes the onset of the morphological instability [18].
Hence we have considered a situation in which the con-
vective and morphological instabilities are effectively un-
coupled. In this case the solid-liquid interface is planar
and stationary in the conductive state, but deformable in
the presence of convection.

The separation ratio S and the dimensionless thickness
of the solid layer A are the most relevant parameters that
appear in this problem. As in the case of solidification of

a pure substance [4,5], the solidified layer plays the role
of an upper deformable boundary that is impermeable to
mass flow and is less conducting than the upper plate.
The solutions of Eq. (4.2) indicate that the inclusion of &
in Eq. (3.30), by taking 8=0 (€?), has little effect on the
profile of F or on the shape of the interface. Therefore
the profile of 7, is determined primarily by ®,. The
dependence of 7, on the concentration enters through the
term V%4 F=V2%c¢,, since to leading order ®,=0 and thus
F=c,.

If, instead of infinitely conducting plates, we consider
plates that are poor conductors of heat compared to the
fluid, then the problem must be reformulated to also in-
clude a heat-transfer Biot number y at the lower plate.
In this case, the critical wave number and the critical
Rayleigh number for the onset of convection depend on y
and on the mass-transfer Biot number 3. This depen-
dence is shown in Figs. 6(a) and 6(b), for a Lewis number
7=0.03 and 4 =0. Figure 6(a) shows plots of the critical
wave number «, against S for several values of  and v.
We note that a, does not vary with S when y and B are
equal, but a, decreases with increasing S for ¥ >3, and
increases with increasing S for y <p3, i.e., the signs of
(da,. /3S) and (B—7y) agree. We have also observed that
the magnitude of a, decreases in magnitude as both y
and 3 approach zero. Consequently, the lower bound on
S, Eq. (3.28), for which these results are valid can be
made smaller by considering plates which are poorer con-
ductors of heat than the fluid. Thus a purely analytical
weakly nonlinear pattern formation analysis, which in-
cludes transition from a thermally induced flow pattern
S =0 to a Soret-driven induced flow pattern S > 0 is plau-
sible.

The critical Rayleigh number, however, decreases
monotonically with the separation ratio S for any values
of the Biot numbers 8 and y. For S fixed, R, is found to
increase with increasing values of the difference (B—7v);
see Fig. 6(b).
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